

Pricing agricultural emissions and rewarding climate action in the land sector

Technical Workshop 14 June 2023

Brussels

www.trinomics.eu

Housekeeping rules

- In-person participants:
 - Raise your hand to ask for the floor
 - When given the floor, please say your name and organization
 - Turn on your microphone before speaking
 - Please switch off / mute your phone
- Online participants:
 - Post your questions in the chat
- The workshop will be recorded
- Slides will be shared afterwards with all registered particants
- Input to be provided in the online stakeholder survey launched at this workshop (15 June - 28 July)

Time (CET)	Activity	Who					
13:30-13:35	Welcome	Hans Bolscher, Moderator (Trinomics)					
13:35-13:55	Policy context	Alexandre Paquot, DG CLIMA Director Michael Pielke, DG AGRI Acting Director					
13:55-14:05	ECA recommendations for climate mitigation in agriculture	Jonas Kathage , European Court of Auditors					
Part 1: Emission trading for pricing agricultural GHG emissions along the value chain							
14:05- 14:20	Policy design options and considerations for an ETS	Julia Bognar, IEEP					
14:20- 14-55	Panel discussion with representatives from various stakeholder groups to provide different perspectives.	Moderated by Trinomics					
	Panellists: Jonathan Verschuuren (Tilburg University); Marion Picot (CEJA); Pierre-Marie Brizou (Danone); Amy Hughes (EDF)						
14:55 - 15:20	Audience Q&A (including possibilities to submit questions online)	Moderated by Trinomics					
15:20 - 15:35	Break						

Time (CET)	Activity	Who						
Part 2: Rewarding climate action in the land sector through carbon farming								
15:35 - 15:50	Policy models and considerations for using ETS revenues	Aaron Scheid, Ecologic Institute						
15:50 - 16:25	Panel discussion with representatives from various stakeholder groups to provide different perspectives.	Moderated by Trinomics						
	Panellists: Ivo Degn (Climate Farmers); Celia Nyssens (EEB); Shefali Sharma (IATP); Ana Rocha (European Landowners Organisation)							
16:25 - 16:50	Audience Q&A (including possibilities to submit questions online)	Moderated by Trinomics						
16:50 - 16:55	Launch of the online stakeholder survey	Trinomics						
16:55 - 17:00	Closing remarks	DG CLIMA						

Policy context

Alexandre Paquot DG CLIMA Director, Directorate C - Innovation for a Low Carbon, Resilient Economy

Michael Pielke DG AGRI Acting Director, Directorate B - Sustainability

www.trinomics.eu

14 June 2023

Special Report N°16/2021

CAP and climate: Half of EU climate spending but farm emissions are not decreasing

Audit questions

- Did the 2014-2020 CAP support climate mitigation practices with a potential to reduce greenhouse gas emissions?
- Did the CAP better incentivised the uptake of effective mitigation practices in the 2014-2020 period than in the 2007-2013 period?

Audit approach

- ✓ review of data and CAP actions taken by 27 MS
- Interviews with representatives of farmers, environmental and climate NGOs, and national authorities in Ireland, France and Finland
- ✓ review of scientific studies
- ✓ discussions with experts in agriculture and climate change

What did we look at?

Key sources of greenhouse gas emissions

Mainly methane (CH₄) from

- feed digestion by cattle and sheep
- storage of cattle and pig manure

Mainly nitrous oxide (N₂O) from

- application of chemical fertiliser
- manure applied by farmers or deposited by grazing cattle

Mainly carbon dioxide (CO₂) from

- cultivation of drained organic soils (peatland)
- carbon sequestration on grassland and cropland

Emissions did not decrease since 2010

- Other emissions from agriculture

Main findings > The CAP does not seek to limit/reduce livestock numbers

Market measures include promotion of animal products

>Emissions from chemical fertilisers and manure increased since 2010

> The CAP has provided little or no support to effective measures to reduce such emissions

Take action so that the **CAP reduces emissions from agriculture**

- Invite MS to set target for agricultural GHG emissions
- Assess MS strategic plans to limit risk of increased GHG emissions
- Ensure CAP incentivises reduction of livestock/fertilisers emissions

Main findings CAP measures to protect and increase carbon content have not significantly reduced emissions from land use

>Cultivated drained organic soils are eligible for direct payment

▶ Restored peatlands/wetlands are not always eligible to receive CAP funds

Take steps to reduce emissions from cultivated drained organic soils

- Assess impact of CAP on peatland/wetland
- Incentivise the rewetting/restoration of drained organic soils

	Despite 26% of CAP are associated with climate action, the Commission did not set a specific mitigation target				
Main findings	Data collected does not allow a proper monitoring of the impact of CAP climate funding on greenhouse gas emissions				
	>2014-2020 changes to the CAP did not reflect new climate ambition				
	EU law does not apply a polluter-pays principle to greenhouse gas emissions from agriculture				
	Recommendation #3				
Report regularly on the contribution of the CAP to climate mitigation					

- Set indicators to assess impact of CAP on climate mitigation
- Apply polluter pays principle, reward farmers for carbon removals

Thank you for your attention!

Find out more about the other products and activities of the ECA:

eca.europa.eu

ECA-InstitutionalRelations@eca.europa.eu

@EUauditors

EUROPEAN COURT OF AUDITORS

12, rue Alcide De Gasperi 1615 Luxembourg LUXEMBOURG

Part 1: Emissions trading for pricing agricultural GHG emissions along the value chain

www.trinomics.eu

Emissions trading for pricing agricultural GHG emissions along the value chain Part 1: Policy design options and considerations for an ETS

Julia Bognar, Senior Policy Analyst, IEEP Technical workshop, 14.06.2023

Trinomics 🥐

eco logic

umweltbundesamt[®]

Institute for European Environmental

Policy

Objective of the study

- Explore and design 5 policy options for applying the polluter pays principle towards agricultural emissions
- Assessment of the proposed policy options against a set of criteria

Key challenges and considerations

- Large number of farms in the EU
 - Consideration: minimise burden of implementation
- GHG MRV. Tools are not yet commonly used by farmers in the EU
 - Consideration: reliable but cost effective MRV
- Risk of production moving outside EU
 - Consideration: safeguards against carbon leakage
- Risks to farmer economic security
 - Consideration: provide financial incentives for innovation and change
- Political barriers to implementation
 - Consideration: options with high public acceptance

Assessment of policy options

Sources of GHG emissions

*Excludes on-farm energy use

Five proposed policy options

On-Farm ETS

- Point of obligation: farm operators
- Three options
 - All GHG
 - Livestock
 - Peatlands

Upstream ETS

 Point of obligation: fertiliser producers and feed importers

Downstream ETS

 Point of obligation: meat and dairy processors

On-Farm ETS: Scope

Source of emissions	GHG Type			Net emissions per	Included in on-farm ETS scope?		
	CH4	N20 CO2		annum (MtCO2e)	All GHG	Livestock	Peatlands
Enteric fermentation	\checkmark			169 MtCO ₂ e	\checkmark	\checkmark	
N2O Emissions from managed agricultural soils		\checkmark		146 MtCO ₂ e	\checkmark		
Manure management	\checkmark	\checkmark		61 MtCO ₂ e	\checkmark	\checkmark	
Soil carbon emissions from organic soils	\checkmark	\checkmark	\checkmark	31.8 MtCO ₂ e	\checkmark		\checkmark
Grasslands			\checkmark	13.1 MtCO ₂ e	\checkmark		
Soil carbon emissions from mineral soils			\checkmark	10.2 MtCO ₂ e	\checkmark		
Liming			\checkmark	5.4 MtCO ₂ e	\checkmark		
Urea application			\checkmark	3.6 MtCO ₂ e	\checkmark		
Rice farming	\checkmark		\checkmark	1.97 MtCO ₂ e	\checkmark		
Burning crop residues	\checkmark	\checkmark		0.54 MtCO ₂ e	\checkmark		
On-farm energy use	\checkmark	\checkmark	\checkmark	?			

Off-Farm ETS: Scope

Source of emissions	GHG Type			Net emissions per annum	Included in ETS scope?	
	CH4	N20	CO2	(MtCO2e)	Upstream	Downstream
Enteric fermentation	\checkmark			169 MtCO ₂ e	\checkmark	\checkmark
N2O Emissions from managed agricultural soils		\checkmark		146 MtCO ₂ e	\checkmark	
Manure management	\checkmark	\checkmark		61 MtCO ₂ e		\checkmark
Soil carbon emissions from organic soils	\checkmark	\checkmark	\checkmark	31.8 MtCO ₂ e		
Grasslands			\checkmark	13.1 MtCO ₂ e		
Soil carbon emissions from mineral soils			\checkmark	10.2 MtCO ₂ e		
Liming			\checkmark	5.4 MtCO ₂ e		
Urea application			\checkmark	3.6 MtCO ₂ e	\checkmark	
Rice farming	\checkmark		\checkmark	1.97 MtCO ₂ e		
Burning crop residues	\checkmark	\checkmark		0.54 MtCO ₂ e		
On-farm energy use	\checkmark	\checkmark	\checkmark	?		

Policy option designs

- For each option, the study outlines possible designs in terms of governance and administration
 - Administrative actors involved
 - Requirements for measuring emissions
 - Setting a cap
 - Potential pilot phase for MRV before implementation of an ETS
 - Supporting institutions/frameworks needed
 - Incentivising good on-farm practices

Emission Trading Systems: cross-cutting issues

- Monitoring, Reporting and Verification
 - Challenges of MRV
 - Trade-offs between proxies versus onfarm measurements
 - Potential solution to trade-offs: simple versus complex approach

Mitigative practice	EU On-Farm GHG Calculator	He Waka Eke Noa On-Farm Carbon Levy Proposal	Label Bas Carbone
Reduce synthetic fertiliser use	\checkmark	\checkmark	✓
Urease inhibitors	-	\checkmark	-
Improved manure management	\checkmark	-	\checkmark
Convert pastoral land to arable crops	-	\checkmark	\checkmark
Keep soils covered all year	\checkmark	-	\checkmark
Introduce legumes	\checkmark	-	-
No tillage	\checkmark	-	-
Agro-forestry and landscape elements	\checkmark	\checkmark	\checkmark
Feed management	\checkmark	\checkmark	\checkmark
Adjust livestock numbers	-	\checkmark	\checkmark
Improve animal housing			\checkmark
Increase livestock performance	\checkmark	\checkmark	\checkmark
Livestock gene editing	-	\checkmark	✓
Feed additives	-	\checkmark	-
Methane vaccines	-	\checkmark	-
Nitrification inhibitors	-	\checkmark	-
Enhanced fertiliser products	-	\checkmark	-
Avoid burning residues	\checkmark	-	-
Biogas production	\checkmark	\checkmark	-
Improved on-farm energy use	\checkmark	-	\checkmark

Emission Trading Systems: cross-cutting issues

- De Minimis thresholds for participation
 - Exclusion of small farms where possible? (for upstream/downstream small businesses?)
- Regulatory flexibilities
 - Preventing carbon leakage: Free allocation of allowances or CBAM?
- Allocation and auctioning of allowances
 - Potential role of producer organisations

Conclusions

- Policy design complexities to further consider
 - Besides complex approach to MRV, how to create 'buy-in' for farmers
 - How to use revenues from an ETS to support climate actions by farmers
 - Accompanying measures needed to support an ETS – use of a wider toolbox
 - Balancing the timeframe aspect long period will be needed for this transition, but time is of the essence for climate mitigation

Break

www.trinomics.eu

Part 2: Rewarding climate action in the land sector through carbon farming

www.trinomics.eu

Ecologic Institute

Science and Policy for a Sustainable World

umweltbundesamt[®]

Part 2: Linking carbon removals in the land sector to an AgETS

Policy options, LULUCF removals and challenges

Aaron Scheid, Fellow, Ecologic Institute

Technical workshop, 14.06.2023

Table of Contents

- 1. Objective of the study
- 2. LULUCF removals options & key challenges
- 3. Removals policy models & key challenges
- 4. Discussion

Objective of the study

- How can the revenue or allowance demand from an AgETS (Part 1) be used to reward additional carbon removals in the LULUCF sector?
- Define the scope of LULUCF removals options and understand their potential and key challenges.
- Understand potential removal policy models (that link LULUCF removals to an AgETS) – and strengths/weaknesses in LULUCF context
- Discuss removals policy models design elements

Key challenges of LULUCF removals

- Mature status of solutions
- Potentials for co-benefits
- Some key challenges must be addressed
 - Robustness & cost of MRV
 - Permanence
 - Additionality
 - Leakage

Adapted graph based on Bay et al. 2021

Removal policy models assessed

Integrated AgETS

- Direct, unrestricted link between compliance entities (polluter) and removers, who are also compliance entities in the ETS.
- Allowances are fully fungible and can be traded to meet compliance obligations, with no limits.

Direct Link

Offsets

- Removers participate voluntarily and are external to the ETS (not compliance entities)
- LULUCF removals not generally covered by an ETS – only mobilised in the form of offsets

Direct Link

ETS scope

Deductions

- Remover is a polluter (i.e. compliance entity within the ETS)
- LULUCF removals are not generally covered by an ETS –removals only mobilised in the form of deductions
- Polluter reduces emissions liability through removals onsite (farmer) or by insetting within supply chain (processor)

Direct Link

ETS scope

Interconnected: through government

- Government procures removals using revenue from polluter pays ETS (e.g. by auctioning removals credits or using allocation)
- Government sells removal credits to polluters (to meet their compliance obligations)

Indirect Link

ETS scope

Disconnected markets

- Government procures LULUCF removals from removers using polluter pays revenue
- Removals do not affect ETS: while the government uses revenue generate by ETS, removals provision does not affect ETS supply

No Link

Key challenges linking AgETS and LULUCF removals

Agricultural emissions reduction deterrence

• Non-equivalence (LULUCF removals - emission reductions)

Agricultural emission reduction deterrence

Key issues to discuss:

- Linking expands AgETS cap decreases incentives for emissions reductions – "reduction deterrence"
- Polluters have the option to purchase removals or reduce emissions → availability of cheaper removal options (e.g. Afforestation) deters emissions reduction efforts
- A key risk for direct link and indirect link policy options (not no link option)

Policy design can try to manage the weaknesses in removal policy models (e.g. quantitative or qualitative restrictions, discount factors) \rightarrow Make removals more costly \rightarrow delay in the increase of removals?

Nonequivalence

LULUCF removals

Emission reductions

Key issues to discuss:

- LULUCF removals are not the same as emission reductions
- Emission avoided by polluter is permanent vs. LULUCF removals can be re-released unintentionally or through management change → total amount of GHGs in the atmosphere will be higher
- Different quantification uncertainties between emission reductions and LULUCF removals?
- Scope of gases: LULUCF removals = CO2, Ag emission reductions = CH4, N20, CO2 → different warming impacts

Policy design can try to manage the weaknesses in removal policy models (e.g. discount rates, temporary removal units, liability, buffers, etc)

Thanks!

Aaron Scheid

aaron.scheid@ecologic.eu

Hugh McDonald

hugh.mcdonald@ecologic.eu

Ecologic Institute

Pfalzburger Str. 43/44 10717 Berlin Germany

Tel. +49 (30) 86880-0

ecologic.eu

Survey for written input from stakeholders on

ETS options on agriculture GHG emissions and policy models to link an agricultural ETS to a financial reward system for carbon removals from the land sector

- Open from June 15th until July 28th, 2023
- Link: <u>https://ec.europa.eu/eusurvey/runner/PPPAgriStakeholderSurvey2</u> 023
- Registrants agreeing to be contacted for further consultation will receive an email with the link to the survey

Thank you!

Technical Workshop 14 June 2023

Brussels

www.trinomics.eu